
elos - Flexible event logging
and management with normalized
output-format for Linux

www.elektrobit.com

Tech paper

http://www.elektrobit.com

2

elos - Flexible event logging and management with normalized output-format for Linux

1. elos – The event and signal funnel 4

2. Event collection – input side 8

3. Event logging and storage backends 12

4. Security of the config 13

5. Test suite testing elos 14

6. Documentation 14

7. Conclusion 14

8. Future extensions 15

9. How to get elos 15

10. References 15

11. About emlix 16

Summary
of Tech paper contents

3

elos - Flexible event logging and management with normalized output-format for Linux

Types of generic operating-system-near events:

•	 Simple	events:	startup/shutdown/config-change
•	 Seldom	events:	update-processes,	reset,	factory-reset
•	 Hardware	events:	high	temperature,	error	of	hardware
•	 Critical	events:	hardware	failure	occurred,	failed	selftest
•	 Debug	events:	out	of	memory,	cpu	overload	
•	 Security	events:	failed	log-ins,	replacement	of	credentials

All	above	events	have	a	very	heterogeneous	format	and	way	of	handling.

elos	helps	in	overcoming	this,	using	a	canonical	event	format.

Event-driven	architectures	(EDA1)	assume	that	everything	can	be	hooked	to	events	and	only	when	the	event	occurs	
actions	are	started.	

There	are	numerous	benefits	of	EDA:

•	 	Limited	computer	resources	are	shared	over	an	enormous	number	of	events	and	receivers	that	only	work	if	
needed	and	do	not	waste	compute	resources	for	polling

•	 Already	existing	architectures	of	FOSS	components	assume	an	EDA	
•	 Foundation	of	a	micro-service	architecture	is	set-up

In	a	Linux	environment,	such	architectures	find	a	natural	habitat	and	many	FOSS-components	are	available	to	
support.

The	Linux	kernel	for	example,	has	many	interfaces	that	can	be	used	to	be	notified	of	important	events.	The	same	
is	true	for	startup	systems	and	network	attached	frameworks	such	as	MQTT.

When	looking	at	these	different	systems,	it	becomes	clear	that	each	has	its	own	understanding	of	events,	their	
arguments	and	the	interface	used	to	retrieve	and	send	out	events.

elos	supports	design	of	EDAs	by	handling	events	of	any	kind	with	structured	and	configurable	solutions.

We	begin	with	an	example	use	case:

Requirement:	The	client-application	shall	be	started	after	the	server-application	has	finished	its	initialization.

Questions	to	be	answered	in	detailed	design:

•	 Which	event	is	the	right	start-signal	to	start	the	client?	
	 •	 when	the	port	is	open?	
	 •	 when	the	process	is	there?	
	 •	 when	a	specific	log	line	is	written?	
	 •	 when	the	process	sends	a	signal?	

All	these	events	are	valid	to	be	used	as	a	trigger	event	for	the	client-start,	but	they	are	challenging	to	implement	
and	maintain,
•	 What	happens	if	the	port	changes?
•	 What	happens	if	the	log	isn’t	printed	any	longer?
•	 What	happens	if	the	receiver	needs	to	be	extended?

All	of	the	above	questions	can	be	answered	by	writing	a	script	that	checks	for	xyz	every	5s	and	then	types	zyx.		
However,	that	is	neither	efficient	nor	quick,	and	far	from	maintainable.

elos	approaches	 this	by	splitting	up	and	separating	event	detection,	event	structure,	event	distribution,	event	
filtering,	event	storage	and	handling.

4

elos - Flexible event logging and management with normalized output-format for Linux elos - Flexible event logging and management with normalized output-format for Linux

1. elos – The event and signal funnel

Figure 1: elos: a funnel for events from multiple heterogeneous sources

Design

elos	provides	a	clean	separation	in	the	flow	of	events:

• event producer
•	 event	distribution	and	filtering	
•	 event	receiving	and	handling	
•	 event	logging	to	storage

Events	from	many	different	sources	are	collected	by	elos	or	can	be	provided	to	elos	for	verification.	elos	takes	all	
of	these	events	and	funnels	them	to	receivers	that	are	interested	in	that	specific	event.

elos	takes	any	line	printed	to	syslog	or	kernel	log	as	a	potential	event	and	is	even	able	to	react	on	‘silent’	events	
that	only	cause	a	line	in	a	log	to	be	printed	with	no	further	activities.

In	the	given	server	client	example,	the	producer	side	needs	to	be	modified	in	case	the	port	number	changes.	The	
event	itself	stays	unmodified	and	no	event	receiver	will	experience	any	change.

5

elos - Flexible event logging and management with normalized output-format for Linux elos - Flexible event logging and management with normalized output-format for Linux

Basic architecture of elos

Figure 2: Basic inner architecture of elos and its interfaces

elos	accepts	events	 from	any	process	using	 the	C	API	provided	by	 the	 libelos	 library	 to	 send	events	 via	 Inter	
Process	Communication	 (IPC)	channels.	 In	case	 libelos	cannot	be	used,	 the	protocol	can	also	be	 implemented	
directly.

The	events	undergo	a	first	filter-stage	to	ensure	the	sender	is	only	sending	events	 it	 is	allowed	to	send	with	a	
defined	and	configurable	maximum	rate.

Alternatively,	elos	can	itself	“scan”	for	events	in	the	system.	This	is	accomplished	by	a	module	loaded	to	the	elos	
process.	Such	scanners	are	used	to	scan	the	system	log	and	kernel	log	for	events.
The	 inner	 event	 distribution	 engine	 of	 elos	 forwards	 the	 events	 to	 the	 potential	 subscribers	 and	 the	 logging	
subsystem.

Depending	on	 the	filter	 configuration,	 the	event	 is	 then	delivered.	The	 subscriber	 receives	 the	event	and	can	
further	analyze,	process	and	react	to	it	as	needed.

The	same	filtering	technique	is	used	to	select	the	storage	of	each	event.	Depending	on	the	filter-setting,	the	event	
is	stored	in	the	respective	storage	system	either	permanently	or	until	the	next	reboot.	The	maximum	retention	
time	and	log	size	is	configurable.

6

elos - Flexible event logging and management with normalized output-format for Linux

Event format

To	handle	events	efficiently,	a	unique	format	is	needed.	elos	defines	a	canonical	format.	The	canonical	format	
contains	strongly	and	weakly	typed	fields.	Strongly	typed	fields	have	a	strictly	defined	format	(usually	integer)	with	
a	fixed	elos-wide	mapping	of	numbers	and	semantics	(e.g.	a	message	code	of	4004	always	means	that	something	
cannot	be	found,	it	is	obviously	inspired	by	HTTP2).	Weakly	typed	fields	can	be	freely	filled	by	the	sender	with	any	
kind	of	information	(usually	JSON3	encoded	data	structures).	This	mixture	allows	flexibility	and	efficient	generic	
filtering	at	the	same	time.

Canonical format

date : timestamp in nano seconds resolution
source.appName : string
source.fileName : string
source.pid : int
severity : int
hardwareid : string
message code : int (inspired by http)
classification : flags
payload: (text, number, structs)

The payload	field	has	no	specific	type	and	can	be	used	freely.	The	source	field	contains	-	if	applicable	-	the	name	
and	identities	of	the	emitting	entity.		If	the	kernel	has	sent	the	event,	the	pid	will	be	set	to	0.	

All	other	fields	are	strongly	typed	and	need	to	be	filled	out	respectively.

The	message	code	field	has	a	predefined	set	of	code	inspired	by	HTTP	status	codes	but	mapped	to	a	wider	range,	
hence	4004	means	that	a	file	was	not	found.

Example events

Assuming	an	embedded	in-vehicle	environment,	where	typical	Linux	events	shall	be	processed:

Program internal error

In	the	case	of	a	segmentation	fault	 (SIGSEGV)	from	a	process,	a	mail	or	MQTT	message	 is	sent	to	some	cloud	
service.	The	event	might	look	like	this:

date : 123456
source.appName : myApp
source.fileName : /home/user/myApp
source.pid : 1234
severity : 0x2 (=error)
hardwareid : myMachine
message code : 5002
classification : 0x20
payload:
{
 "function":"main",
 "address": "0x12424f2",
 "..."
}

The	receiver	of	the	event	decodes	the	payload	and	might	collect	further	data	from	the	ECU,	the	comprehensive	
data	is	then	sent	to	e.g.	a	cloud-instance.

7

elos - Flexible event logging and management with normalized output-format for Linux

Use ssh as soon as possible

It	is	required	to	start	sshd	as	soon	as	a	network	is	attached.

The	event	might	look	like	this	and	was	derived	from	networking	kernel	interfaces:

date : 123456
source.appName : kernel
source.fileName : -
source.pid : 0
severity : 0x04 (=info)
hardwareid : myMachine
message code : 7003
classification : 0x02
payload:
{
 "interface": "eth0",
 "action": "plugged"
}

Open debugging interfaces if external switch was pressed

Start	the	debug	service	as	soon	as	a	general	purpose	input	(GPIO)	is	switched.	The	event	might	look	like	this:

date : 123456
source.appName : kernel
source.fileName : -
source.pid : 0
severity : 0x04 (=info)
hardwareid : myMachine
message code : 7005
classification : 0x80
payload:
{
 "interface": "gpio23",
 "action": "raise"
}

Report a security incident

Suspicious	network	pakets	did	cross	the	TCP/IP	stack	and	the	packet	filter	detected	them.	The	resulting	logs	were	
converted	by	a	scanner	of	elos	to	an	event	looking	like	this:

date : 123456
source.appName : kernel
source.fileName : -
source.pid : 0
severity : 0x03 (=warning)
hardwareid : myMachine
message code : 4002
classification : 0x02
payload:
{
 “interface”: “eth0”,
 “action”: “package dropped”,
 {
 ... further info on the package
 }
}

8

elos - Flexible event logging and management with normalized output-format for Linux

A	possible	reaction	would	be	to	stop	all	network	activities	and	shut	down	the	ECU	as	a	cybersecurity	attack	might	
be	ongoing.	This	way	elos	can	be	used	to	design	a	cyber	security	response	as	required	in	UN-ECE	R155	5.1.1	(d)4.

But	it	could	also	be	fine	to	just	store	the	event	in	the	logs	of	elos	for	later	cybersecurity	audits.	In	the	latter	case	
no	receiver	needs	to	be	implemented.	This	resulting	log	is	of	use	for	implementation	of	UN-ECE	R155	5.1.1	(e)	
“analysis	of	attempts	of	cyberattacks”.

2. Event collection – input side

Input from scanners

On	the	input	side	elos	supports	loading	of	shared	objects	into	the	main	process.	These	modules	scan	the	system	
for	events	and	feed	them	into	the	internal	event	queue	of	elos.		Thus,	these	modules	are	called	scanners.

Depending	on	the	nature	of	the	events,	scanners	poll	for	an	event	regularly	using	their	own	threads	or	sleep	until	
an	event	is	reported.

Elos	handles	the	syslog	and	the	kernel	log	with	dedicated	scanners.	They	parse	the	metadata	of	each	log	line	for	
source,	severity,	etc.	The	original	line	can	at	any	time	be	retrieved	from	the	payload.

The	 syslog	 scanner	 behaves	 like	 an	 ordinary	 POSIX	 syslogger:	 It	 receives	 all	 log	 lines	 sent	 using	 the
syslog	()	function.	Each	line	is	converted	by	the	scanner	to	an	event	in	canonical	format.
The	kernel	 log	scanner	 looks	 for	 logs	 from	the	kernel	by	reading	/dev/kmsg.	Each	 log	 line	 from	the	kernel	 is	
converted	to	an	event	and	processed	by	elos.

The	network	scanner	makes	use	of	“netlink”5	and	“netdevice”6	to	detect	events	concerning	network	activities	like	
plugging	of	connections,	etc.	Whenever	a	change	was	detected,	a	generic	event	in	canonical	format	is	pushed	to	
the	elos	queue	to	allow	follow-up	actions.

Input via API / Socket

Additionally	to	the	scanners,	external	processes	can	deliver	events	for	processing	and	forwarding	to	elos,	either	
via	local	IP	or	Unix-Domain-Socket.

The	library	libelos	allows	easy	creation	of	the	needed	protocol	structures.	Any	other	environment	not	using	the	
library	needs	to	implement	the	simple	and	straightforward	protocol.		This	way	applications	written	in	any	arbitrary	
programming	language	can	make	use	of	the	logging	and	event	handling	features.		It	is	left	to	system	architects	to	
make	use	of	this	interface	for	highly	specific	events	of	any	kind,	for	example,	in	the	application	software	layers.

Example:

A	small	C++-based	application	polls	the	temperature	sensor	every	5	seconds.	If	it	is	higher	than	a	certain	limit,	an	
event	is	pushed	to	elos.

That	 event	 is	 filtered	 and	 forwarded	 to	 all	 applications	 doing	 heavy	 calculations	 (e.g.	 doing	 some	 Artificial	
Intelligence).	The	event	causes	these	applications	to	slow	down	or	even	to	stop	their	calculations,	which	is	expected	
to	stop	further	temperature	increases.

9

elos - Flexible event logging and management with normalized output-format for Linux

Figure 3: Example architecture to handle over temperature situations

Example:

Another	application	using	the	SMART7	tools	to	check	the	status	of	the	flash-based	storage	reports	events	via	elos.

These	events	are	received	and	processed	by	a	predictive	maintenance	application.	This	allows	a	replacement	of	
the	storage	before	it	is	running	out	of	spare	sectors	or	it	just	reduces	the	write	activities	until	replacement.

During	development	or	testing	of	a	vehicle,	these	kinds	of	events	can	help	to	forecast	the	degree	of	wear	of	the	
flash	and	from	that	the	expected	end	of	life	of	the	storage	can	be	deduced	and	finally	optimized.

Security aspects

The	receivers	of	events	from	elos	usually	take	actions	depending	on	the	type	and	content	of	the	event.	For	example,	
a	receiver	responsible	for	a	clean	shutdown	will	shutdown	that	ECU	in	case	a	battery-low	event	was	sent.	If	any	
process	is	able	to	send	a	fake	low-power	event	via	elos,	an	unintended	shutdown	will	be	initialized.

The	countermeasure	to	this	scenario	is	provided	by	the	elos	input	filtering.	Only	previleged	processes	are	allowed	
to	send	in	such	critical	events.	The	processes	and	events	are	defined	the	elos	config	using	rpn-filters.

The	processes	allowed	to	send	such	events	are	defined	by	their	ELF-file.	In	the	above	example	a	process	running	
the	executable	 /usr/bin/system-manager	might	be	allowed	to	send	such	events.	 If	 the	process	has	a	different	
executable	the	event	is	refused.

The	extensions	of	elos	to	do	the	event	authorization	via	powerful	cryptographic	algorithms	is	planned.

10

elos - Flexible event logging and management with normalized output-format for Linux

Subscribe to ‘your’ events

Via	the	elos	IPC	interface	any	process	can	register	with	elos	for	event	retrieval,	e.g.	by	using	the	libelos.

After	registration,	a	filter	needs	to	be	defined	to	start	receiving	events.	Any	event	that	matches	the	filter	is	then	
delivered.	It	is	now	up	to	the	receiving	process	to	further	analyze	the	event	or	to	start	an	activity	right	away.

Example:

A	plugged-event	or	link	up	event	from	the	network-subsystem	can	be	enough	of	information	to	start	connecting	to	
a	server.	The	analysis	of	the	details	and	the	payload	of	the	event	can	be	omitted,	making	the	receiver	less	complex.

On	the	other	hand,	and	depending	on	the	nature	of	the	event,	the	receiver	might	need	to	analyze	the	event	in	
detail	to	derive	the	proper	reaction.	Analysis	of	the	payload	might	become	a	more	complex	task	as	JSON	or	similar	
structures	need	to	be	parsed.

Depending	on	this	analysis,	 the	process	may	react	 to	 the	event	 in	an	appropriate	way,	 ignore	 it	or	even	send	
another	event	via	elos.

The	elos	filters	operate	on	the	canonical	 format	of	the	events.	They	are	formulated	 in	reverse	polish	notation	
(RPN)8.	Any	field	of	the	canonical	format	including	the	payload	can	be	used	for	filtering.	Filters	are	allowed	to	use	
logical	operators	like	‘and’,	‘or’	or	‘not’,	etc,	and	combinations	of	them.

Example:

Filter:
In	RPN:	“.event.messageCode 2007 EQ .event.source.appName ‘sshd’ EQ AND”
In	infix-notation:	“.event.messageCode=2007 && event.source.appName = ‘sshd’ ”

This	filter	maps	to	the	2007	Code	(meaning	socket	open)	from	sshd.	Hence	the	receiver	will	be	informed	when	the	
ssh-server	is	ready	to	be	used.

Hint:	The	details	for	detecting	this	state	are	left	to	the	input	side	of	elos,	making	event	detection	and	handling	
independent.

Example:

Filter:	“.event.messageCode 5005 EQ”
The	message	code	5005	tells	us	that	a	process	has	crashed	and	core-dumped.	The	resulting	action	could	be	to	
collect	forensic	data	and	send	them	to	the	cloud	in	order	to	allow	further	analysis	of	the	issue.	Additionally	the	
remaining	running	software	could	use	this	event	to	change	into	a	safe-mode	to	prevent	follow-up	issues.

Example:

In	 this	design	example	some	battery	handling	 is	assumed.	A	battery	monitoring	process	 is	 regularly	 checking	
the	conditions	of	all	batteries	and	sends	events	in	case	some	relevant	status	has	changed.	The	main	batteries	
communicate	via	the	CAN-Bus	but	backup	batteries	use	the	Linux	default	“power_supply”	subsystem.

11

elos - Flexible event logging and management with normalized output-format for Linux

The	battery	monitoring	process	sends	the	following	events	when	appropriate:

date : 123456
source.appName : battery_mon
source.fileName : -
source.pid : 4321
severity : 0x04 (=info)
hardwareid : myMachine
message code : 7007
classification : 0x02
payload:
{
 "remaining_time": "1h",
}

Any	receiver	of	 this	event	can	now	react	 in	an	 individual	way	to	cope	with	the	 fact	 that	1h	of	run	time	 is	 left.	
Reactions	could	be	to	warn	the	driver	or	to	switch	off	heating.

Another	event	from	the	battery	monitoring	process	could	be:

date : 123456
source.appName : battery_mon
source.fileName : -
source.pid : 4321
severity : 0x03 (=warning)
hardwareid : myMachine
message code : 7008
classification : 0x02
payload:
{
 "remaining_time": "30s",
}

With	this	information,	each	process	should	stop	energy	hungry	calculation	immediately.		To	save	power	needed	
for	storing	data	to	flash,	a	shutdown	has	to	be	expected	shortly.	A	more	fine-grained	design	of	events	around	
battery	monitoring	should	be	created	for	an	actual	real-world	application,	but	that	is	out	of	the	scope	of	this	paper.

Example:	Software	updates	are	installing

A	software	update	tooling	(e.g.	over-the-air	updates)	can	make	use	of	elos	by	communicating	the	start	and	end	of	
an	update	process	to	prevent	unwanted	activities	during	replacement	of	software,	or	to	inform	the	user	interface	
about	the	progress	of	the	update.

Example:	The	flash	(SSD/eMMC)	is	detecting	issues

Events	via	elos	can	be	used	to	implement	predictive	maintenance.	An	elos-scanner	or	any	other	observing	process	
could	generate	events	depending	on	the	status	of	the	flash-storage.	If	the	number	of	total-written	bytes	exceeds	
a	certain	amount,	or	if	the	count	of	spare	blocks	goes	below	a	defined	limit,	an	event	is	sent	out.	The	reaction	to	
that	event	might	be	to	request	a	hardware	replacement	and	a	limitation	of	the	writing	activities	to	a	minimum.	The	
definitions	of	limits	and	resulting	actions	can	be	freely	designed	by	the	architects	of	the	ECU	Software.

Example:	starting	applications	and	containers	depending	on	events

With	integration	of	an	init-system	that	allows	start,	stop	and	control	of	running	processes	and	containers,	elos	
enables	a	system	design	that	starts	and	stops	applications	and	containers	depending	on	the	current	use-case	of	
the	vehicle.	
If	a	software	component	detects	highway-driving,	some	containers	with	specific	functions	for	highway	driving	are	
started	and	the	container	for	parking-service	is	shutdown.

12

elos - Flexible event logging and management with normalized output-format for Linux

Example:	Get	a	notification	on	low	free	memory	(RAM	or	storage)

The	RPN-Filters	can	even	filter	with	the	payload	if	it	is	formulated	as	JSON.	Hence	a	possible	system	design	could	
be	based	on	regular	broadcasting	of	storage	status	events,	e.g.	every	5	minutes.	These	events	carry	the	actual	
free	space	in	bytes	in	the	payload.	The	filters	just	forward	the	event	in	case	the	byte-count	goes	below	e.g.	100MB	
and	that	in	turn	causes	a	deletion	of	data	increasing	the	available	space	again.	Within	this	design	the	decision	for	
the	trigger	limit	(here	100MB)	was	pushed	to	the	receiving	side.	This	shows	the	amount	of	flexibility	the	system	
designers	have	when	using	elos	and	its	infrastructures.

3. Event logging and storage backends

Events	passing	through	elos	and	influencing	all	other	system	parts	can	have	a	high	impact	on	the	functionality	
of	the	ECU,	hence	these	events	need	to	be	logged	and	stored	for	later	reference.	But	elos	events	that	just	occur	
without	software	that	reacts	to	them	can	also	play	an	important	role	when	it	comes	to	analysis	of	incidents.	To	
allow	this	analysis	and	further	audits,	elos	stores	events	for	later	reference.

Logging	is	a	critical	activity	with	an	impact	on	the	lifetime	of	the	flash	storage.	If	all	log	information	is	stored,	the	
available	capacity	of	the	flash	will	not	last	for	a	device’s	lifetime.	The	first	solution	approach	to	this	would	be	to	
delete	old	logs	in	a	circular	buffer	manner.	But	that	might	not	be	the	best	solution,	as	the	total	number	of	write	
cycles	of	 the	flash	device	 is	still	 in	danger	of	being	exceeded.	This	would	result	 in	dramatically	 failing	storage	
devices	after	longer	periods	of	use.

To	 solve	 this,	 elos	 has	 a	 filter-based	multi-level	 approach	 of	 logging	 events	 in	 different	 storage-classes.	 Each	
storage-class	has	a	place	“where	to	store”,	a	filter	“what	to	store”,	and	further	parameters.	The	filters	make	use	of	
the	generic	elos	filtering	approach.	If	an	event	matches	to	the	filter	of	a	storage	class,	the	event	is	logged	using	the	
defined	technology	to	the	place	defined.

Example:

Events	with	a	high	severity	might	be	logged	to	a	SQL-database	residing	on	the	eMMC	flash.	Events	stored	here	are	
deleted	after	one	year.

Events	with	a	higher	severity	are	logged	to	a	very	reliable	storage	in	NOR-Flash	using	json	to	allow	easy	analysis.	
These	types	of	events	are	never	deleted.	Power-Fail-safety	needs	special	care	on	this	device.

Events	with	severity	“debug”	are	logged	in	a	NoSQL-database	to	a	RAM	device	to	allow	debugging.	As	long	as	no	
reboot	occurs	the	data	is	available.

Events	with	very	low	severity	are	just	discarded.

Depending	on	the	design	of	the	storage	technology,	event	logging	with	integrity	protection	is	possible	to	allow	
security	audits	with	a	high	reliability.

13

elos - Flexible event logging and management with normalized output-format for Linux

Figure 4: Logging subsystem of elos: Flexible use of different storage

4. Security of the config

The	configuration	details	of	elos	are	crucial	for	its	function	and	hence	for	the	overall	ECU.	This	leads	to	the	need	
to	secure	the	configuration	files	by	checking	their	integrity	and	verifying	their	authenticity.	The	easiest	way	to	do	
this	is	by	storing	the	configuration	immutably	in	a	dm-verity-secured	read-only	partition.	However	that	might	be	
impossible	as	dynamic	(re-)configuration	is	part	of	many	system	architectures.

To	address	 these	 requirements,	 elos	 supports	fine-grained	configuration	parameter	 verification	where	 critical	
parameters	are	verified	by	checking	signatures.	Only	if	this	check	is	passed	the	parameter	is	accepted,	otherwise	
the	default	is	used.

Non-critical	parameters	can	be	set	freely	in	the	configuration	file.

Example:

The	elos	configuration	for	storage	of	events	is	secured	with	a	signature	of	the	integration	party.	No	one	is	able	
to	modify	the	storage	place	of	events	unless	authorized.	But	the	internal	logging	level	of	elos	is	left	open	to	allow	
different	selections	here.

14

elos - Flexible event logging and management with normalized output-format for Linux

Integration tests

elos	contains	a	test	suite	that	verifies	correct	function	when	installed	on	a	Linux-based	operating	system.	The	test	
suite	verifies	that	all	components	are	installed	and	behave	as	defined.

Unit tests

elos	has	a	unit	test	suite	that	picks	each	function	out	of	its	scope	and	tests	just	the	bare	features	of	that	particular	
function.	Any	function	that	is	called	by	the	function	under	test	(FUT)	can	be	mocked	to	enable	stable	testing	of	the	
function	or	to	inject	errors.

elos	comes	with	a	full	set	of	internal	and	external	API	documentation	along	with	a	user-friendly	manual	showing	
the	ways	to	use	and	configure	elos.

5. Test suite testing elos

6. Documentation

elos	 is	 a	 light-weight	 event	 processing	 framework	 for	 event	 driven	 architectures	 in	 a	 Linux	 environment.	 It	
separates	the	event	detection,	filtering,	processing,	storage,	and	handling	and		therefore	simplifies	the	design	of	
application	software	and	reduces	the	maintenance	complexity.

elos	and	its	default	scanners	enable	you	to	hook	an	event	receiver	to	any	line	of	logging	printed	to	the	default	
logging	channels	of	Linux.	This	eases	the	creation	of	a	first	working	system	design	that	is	based	on	elos.

The	details	for	detecting	event	are	left	to	the	input	side	of	elos,	making	event	filtering	and	handling	independent	
from	the	technologies,	interfaces	and	structures	of	underlying	Linux	subsystems.

7. Conclusion

15

elos - Flexible event logging and management with normalized output-format for Linux

Future	extensions	of	elos	is	aiming	to	cover	aspects	of	static	data.	elos	is	a	good	candidate	to	host	information	that	
is	of	system	wide	interest	but	without	the	character	of	an	event,	e.g.	an	hour-counter	that	just	count	the	time	the	
ECU	is	actively	running,	or	the	number	of	reboots	the	ECU	has	experienced.

•	 	elos	 is	 part	 of	 Elektrobit’s	 open-source	 software	 solutions	 called	 EB	 corbos	 Linux	 –	 built	 on	 Ubuntu.	
Visit	https://www.elektrobit.com/products/ecu/eb-corbos/Linux/	to	learn	more.

•	 	elos	is	an	open-source	community	project.	See:	https://github.com/Elektrobit/elos
•	 	Contact	us	for	questions:	sales@elektrobit.com or elos@emlix.com

[1] See https://medium.com/swlh/the-engineers-guide-to-event-driven-architectures-benefits-and-challenges-
3e96ded8568b

[2]	 	See	RFC	7231	„Hypertext	Transfer	Protocol	(HTTP/1.1):	Semantics	and	Content“
[3]	 	See	IEC	21778	„The	JSON	data	interchange	syntax“
[4]	 	UN-ECE		UN	Regulation	No.	155;	Jan	22nd	2021
[5]	 	Linux	Manpage	netlink(7)
[6]	 	Linux	Manpage	netdevice(7)
[7]	 	SMART	was	originally	defined	 in	ATA-Standard	ACS-2.	The	 features	were	continued	similarly	as	 industry	

standard	in	SCSI	and	even	Flash-based	storage	like	NVMe	based	ones.
[8]	 	Also	known	as	post	fix	notation.	The	operator	follows	the	operands.

8. Future extensions

9. How to get elos

10. References

https://github.com/Elektrobit/elos
mailto:sales%40elektrobit.com?subject=Questions%20regarding%20elos
mailto:elos%40emlix.com?subject=Questions%20regarding%20elos
https://opencontainers.org
https://medium.com/swlh/the-engineers-guide-to-event-driven-architectures-benefits-and-challenges-3e
https://medium.com/swlh/the-engineers-guide-to-event-driven-architectures-benefits-and-challenges-3e

16

elos - Flexible event logging and management with normalized output-format for Linux

emlix	 offers	 industrial-grade	 Linux	 for	 the	 digitalization	 and	 secure	
networking	of	devices,	machines,	and	plant	throughout	the	entire	product	
life	cycle.

For	more	 than	20	years,	 emlix	has	been	 transferring	 system	knowledge,	
innovations	 from	the	open-source	world	and	market	knowledge	 into	 the	
products	of	our	more	than	350	customers	in	automotive,	energy	industry,	
automation	technology,	medical	technology,	safety	technology,	and	others.

As	 a	 provider	 of	 professional	 open-source	 software,	we	 ensure	 process	 security	 and	 transparency.	 The	 tools	
and	development	standards	we	use	are	designed	for	industrial	requirements	and	certifications.	We	offer	long-
term	maintenance	contracts	for	our	solutions	and	thus	assume	responsibility	for	the	product	life	cycle	and	the	
investments	of	our	customers.	

11. About emlix

17

elos - Flexible event logging and management with normalized output-format for Linux

Wolfgang Gehrhardt
emlix GmbH

Wolfgang Gehrhardt is a Senior Systems Engineer at emlix GmbH. He is an
architect for secured embedded Linux systems in the automotive, industrial
and consumer device fields, performing requirements engineering and design
throughout the entire product life cycle.

About the authors

Thomas Brinker
emlix GmbH

Thomas Brinker is a Senior Systems Engineer and Project Manager at emlix
GmbH. He is an architect for secured embedded Linux systems in the automo-
tive, medical, industrial, and consumer device fields, performing requirements
engineering and design throughout the entire product life cycle.

About Elektrobit

Elektrobit	is	an	award-winning	and	visionary	global	vendor	of	
embedded	and	connected	software	products	and	services	for	the	
automotive	industry.	A	leader	in	automotive	software	with	over	
30	years	of	serving	the	industry,	Elektrobit‘s	software	powers	over	
5	billion	devices	in	more	than	600	million	vehicles	and	offers	fle-
xible,	innovative	solutions	for	car	infrastructure	software,	connec-
tivity	&	security,	automated	driving,	and	related	tools,	and	user	
experience.	Elektrobit	is	a	wholly-owned,	independently-operated	
subsidiary	of	Continental.

For	more	information,	visit	us	at	elektrobit.com

Elektrobit Automotive GmbH
Am Wolfsmantel 46
91058 Erlangen, Germany

Phone: +49 9131 7701 0
Fax: +49 9131 7701 6333

sales.automotive@elektrobit.com

elos - Flexible event logging and management with normalized output-format for Linux

www.elektrobit.com

mailto:sales.automotive%40elektrobit.com?subject=
http://www.elektrobit.com

